Symmetry elements, operations and point groups (‘in the molecular world’)

Symmetry concept is extremely useful in chemistry in that it can help to predict infra-red spectra (vibrational spectroscopy) and optical activity. It can also help in describing orbitals involved in bonding, and in interpreting electronic spectra of molecules.

The five fundamental symmetry elements (operators) or operations:

The following symbols (Schoenflies) are used to describe both symmetry elements as well as the symmetry operations (application of the symmetry element)

E (Identity) – all molecules have E (or C₁); causes no change in the molecule

C_n (Rotation axis, clockwise by definition) – $360°$ (or 2π)/n rotation about a rotation axis
‘Highest order’ or ‘principal’ rotation axis: the axis with the highest n value
e.g. C₃ (in CHCl₃), C₆ (snowflake, benzene); C$_\infty$ (linear molecules)

σ (Reflection plane) – mirror plane (exchange of ‘left and right’)
four different types of reflections: σ_v, σ_h, σ_d, σ
σ_v: vertical mirror plane (contains principal rotation axis)
example: BF₃ (planar)

σ_h: horizontal mirror plane (plane perpendicular to principal axis)
example: BF₃ (trivial because its planar)

σ_d: dihedral mirror plane (planes that cut the angle between 2 C₂ axes in half)
example: allene
σ: Mirror plane, but no rotational axis
 ex: aniline (because the 2 hydrogen atoms on NH₂ are out of plane)

\[
\begin{array}{c}
\sigma \\
\hline \\
\end{array}
\]

i (Inversion centre) – position of all atoms remains unchanged after their reflection through the inversion centre
 ex: [PtCl₄]²⁻

\[
\begin{array}{c}
\text{Cl} \\
\text{Pt} \\
\text{Cl} \quad \text{Cl} \\
\end{array}
\]

Sₙ (Mirror-rotation or rotation-reflection axis or improper axis) – 360° /n rotation followed by a reflection through a plane perpendicular to the rotation axis
 Ex: staggered ethane – S₆

Note: S₁ ≡ σ; S₂ ≡ i
Multiplication of symmetry operations

One of the important features of symmetry operations is that they can be performed multiple times and they can also be combined:

1. Repetition of symmetry operations:

Example 1: $C_2^2 \equiv E$ (the superscript indicates how many times C_2 is performed)

 Obviously C_2^2 does not lead to a new symmetry operation

 Another example of this: $\sigma_h^2 \equiv E$

Example 2: C_3^2 is a new symmetry operation (whereas $C_3^3 \equiv E$)

 \Rightarrow the symmetry element C_3 creates the symmetry operations C_3 and C_3^2

2. Combination of different sym. operations:

 B x A (A first, B second)

Example 1: CH$_2$Cl$_2$

Example 3: C_6 (benzene): only C_6 and C_6^5 are symmetry operations of C_6

 $C_6^2 = C_3$, $C_6^3 = C_2$, $C_6^4 = C_3^2$, C_6^5, $C_6^6 = E$

Example 2: $S_n = \sigma_h \times C_n$
3. Inverse operation:
For each operation there is one that brings the molecule back into its original position.

Example 1: C_2^{-1} (counterclockwise rotation by 180 deg), $C_2^{-1} = C_2$ and $C_2 \times C_2^{-1} = E$
Generally: $C_n^{-1} = C_n^{n-1}$

Example 2: $C_3^{-1} = C_3^2$

Example 3: $\sigma^{-1} = \sigma; i^{-1} = i$
Point Groups

Each molecule has at least one point which is unique and which remains unchanged, no matter how many or what type of symmetry operations are performed. Such point is termed *singular point.* (e.g. centre of the benzene molecule)

- **Point group** = The complete set of symmetry operations that characterize a molecule’s overall symmetry.

- **Space groups** = Symmetry classes characterizing entities with translational symmetry. [Space groups don’t have singular points!]

Because there is a limited number of symmetry elements (at least in the molecular world, because n is usually <10) and their combinations, there must be a limited number of point groups! Therefore, so many different molecules belong to the same point group:

Example: H₂O and CH₂Cl₂ both C₂ᵥ (E, C₂, σᵥ, σᵥ’)

Three point groups of low symmetry:

<table>
<thead>
<tr>
<th>Point group</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>asymmetry</td>
<td>CHFClBr</td>
</tr>
<tr>
<td>Cₘ</td>
<td>only 1 symmetry (mirror) plane</td>
<td>C₂H₂ClBr</td>
</tr>
<tr>
<td>Cᵢ</td>
<td>only 1 inversion centre (very rare)</td>
<td>1,2-dibromo-1,2-dichloroethane (staggered)</td>
</tr>
<tr>
<td>Point group</td>
<td>Description</td>
<td>Example</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| $C_{\infty v}$ | linear
infinite number of rotations
infinite number of reflection planes containing the principal axis
easy criterion: linear but no i | H-F |
| $D_{\infty h}$ | linear (like $C_{\infty v}$ but with additional σ_h, C_2, and i)
easy criterion: linear + i | CO$_2$ |
| T_d | tetrahedral symmetry
Contains 24 symmetry operations
(E, $4C_3$, $4C_3^2$, $3S_4$, $3S_4^3$, $3C_2$, $6\sigma_d$) | CH$_4$ |
| O_h | octahedral symmetry
(48 symmetry operations) | SF$_6$ |
| I_h | icosahedral symmetry (120 symmetry operations) | B$_{12}$H$_{12}^{2-}$ |

![Diagram of tetrahedral symmetry](image)

![Diagram of icosahedral symmetry](image)
Groups of high symmetry

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{∞}</td>
<td>These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.</td>
<td>$\text{C}_=\text{H}--\text{Cl}$</td>
</tr>
<tr>
<td>$D_{\infty h}$</td>
<td>These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.</td>
<td>$\text{C}--\text{O}=\text{C}=\text{O}$</td>
</tr>
<tr>
<td>T_d</td>
<td>Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.</td>
<td>$\text{H}--\text{C}=\text{H}$</td>
</tr>
<tr>
<td>O_h</td>
<td>These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.</td>
<td>$\text{F}--\text{S}--\text{F}$</td>
</tr>
</tbody>
</table>

Icosahedral structures are best recognized by their six C_5 axes (as well as many other symmetry operations—120 total).

$\text{B}_3\text{H}_6\text{S}^2$ with BH at each vertex of an icosahedron

Symmetry operations for high symmetry point groups and their rotational subgroups

<table>
<thead>
<tr>
<th>Point Group</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_h</td>
<td>E, 12C_3, 12C_3^2, 20C_3, 15C_2, i, 12S_{10}, 12S_{10}', 20S_6, 15S</td>
</tr>
<tr>
<td>I</td>
<td>E, 12C_3, 12C_3^2, 20C_3, 15C_2, i, 12S_{10}, 12S_{10}', 20S_6, 15S</td>
</tr>
<tr>
<td>O_h</td>
<td>E, 8C_3, 6C_2, 6C_4, 3C_3 ($= C_2^3$), i, 6S_4, 8S_6, 3S_{4u}, 6S_{4d}</td>
</tr>
<tr>
<td>O</td>
<td>E, 8C_3, 6C_2, 6C_4, 3C_3 ($= C_2^3$), i, 6S_4, 8S_6, 3S_{4u}, 6S_{4d}</td>
</tr>
<tr>
<td>T_d</td>
<td>E, 8C_3, 3C_2, 6S_4, 6S_d</td>
</tr>
<tr>
<td>T</td>
<td>E, 4C_3, 4C_3^2, 3C_2</td>
</tr>
<tr>
<td>T_h</td>
<td>E, 4C_3, 4C_3^2, 3C_2, i, 4S_6, 4S_6, 3S_{4u}</td>
</tr>
</tbody>
</table>
Diagram of the Point Group Assignment Method

1. Group of low symmetry?
 - Yes: C_1, C_s, C_i
 - No: Group of high symmetry?
 - Yes: $T_d, O_h, C_{m, v}, D_{m, v}, l_h$
 - No: Highest-order rotation axis C_n

2. Perpendicular C_2 axes?
 - Yes: D groups
 - 4. σ_h?
 - Yes: D_{nh}
 - No: D_{md}
 - No: C or S_{2n} groups
 - 4. σ_h?
 - Yes: C_{nh}
 - No: S_{2n}

3. σ_d?
 - Yes: D_n
 - No: C_n
C_n and S_n point groups

Point groups without any mirror planes:

C_n
the only symmetry element is C_n;
symmetry operations: C_n, C²_n, C³_n, Cⁿ⁻¹_n

C₁ complete asymmetry
C₂, C₃, … are (extremely) rare and difficult to visualize

Example of C₂: H₂O₂ (C₂ cuts angle between the two OOH planes, 94 deg, in half)

![C₂ diagram](image)

S_n
(only possible with n = 2, 4, 6, …)
symmetry operations: S_n, S²_n, S³_n, Sⁿ⁻¹_n

S₂ ≡ C_i example: staggered 1,2-dibromo-1,2-dichloroethane

S₄: Rare! Contains symmetry operations S₄, S²₄ (≡ C₂), S³₄
Example: 1,3,5,7-tetrafluorocyclooctatetraene

![S₄ diagram](image)

Point groups with mirror planes:

C_{nv}
symmetry operations: C_n, ..., Cⁿ⁻¹_n, n x σ_v

C_{1v} ≡ C_s
C_{2v} (very common): H_2O, 1,2-dichlorobenzene

\[\text{Cl Cl} \quad \sigma_v' \quad \sigma_v \quad \text{Cl Cl} \]

C_{3v} (very common): trigonal-pyramidal molecules (NH_3, CH_3Cl)

\[\text{H} - \text{N} - \text{H} \quad \text{Cl} - \text{Br} - \text{F} - \text{F} - \text{F} \]

C_{4v}: square-pyramidal molecules (BrF_5)

\[\text{F} - \text{Br} - \text{F} - \text{F} - \text{F} \]

$C_{5,6,\ldots v}$: very rare

$C_{\infty v}$: all linear molecules without inversion centre (HF, HCl)

\[\text{symmetry elements: } C_n, \sigma_h, \text{ if } n \text{ even, } S_n \]

C_{nh} symmetry elements: C_n, σ_h, i if n even, S_n

C_{2h} has C_2, σ_n and i

example: difluorodiazene (planar)

\[\text{N} - \text{N} - \text{F} - \text{F} \]
C₃₇: B(OH)₃ boric acid (planar)

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{B} \\
\text{O} \\
\text{H}
\end{array}
\]

C₄₅₆₇₈₉: extremely rare

D point groups

Criterion: in contrast to Cₙ groups, D groups have n C₂ axes perpendicular to Cₙ!

Dₙ: symmetry operations: Cₙ, ..., Cₙ⁻¹, n x C₂ (rare point group!)

D₂: one of the excited states of ethylene (slight deviation from planarity!)

fragmentation method: D₂ can be regarded as consisting of 2 identical C₂v fragments joined back to back, so that one half is rotated (with respect to other) by any degree (except m x π/n with m = 2,4,6,...; n = order of C)

D₃: [Co(en)₃]³⁺ en = ethylenediamine
D_{nd}: symmetry elements: C_n, $n \times C_2$, S_{2n}, $n \times \sigma_d$

D_{2d}: allene

D_{3d}: symmetry operations: C_3, C_3^2, $3 C_2$, S_6, $S_6^3 = i$, S_6^5, $3 \sigma_d$
example: staggered ethane (2 C_{3v} fragments: H_3C, rotation by 60 deg)

D_{4d}: S_8

D_{5d}: Ferrocene
D_{nh}:
symmetry elements: C_n, n x C_2, \sigma_h, S_n, n \times \sigma, i \text{ if } n \text{ is even}

Note: the horizontal mirror plane is usually easily identifiable!

D_{2h}: e.g. C_2H_4 (has 3 equivalent C_2 axes; therefore: assigning a _v or _h subscript to \sigma is redundant)

D_{3h}: PF_5 (trigonal-bipyramidal), BF_3 (planar)

D_{4h}: molecules with the geometry of a square (XeF_4)

D_{5h}: planar with 5-fold rotational symmetry (e.g. cyclopentadienyl anion)

D_{6h}: planar with 6-fold rotational symmetry (benzene)

D_{\infty h}: linear symmetrical molecules (N_2, C_2H_2)

Three tips for assigning point groups

1. Most of the low and high symmetry point groups are relatively easy to assign.
2. When it comes to D vs. C or S: look for n C_2 axes perpendicular to C_n.
3. Then look for \sigma_h.

Chirality

Group-theoretical criterion for chirality: Absence of S_n!

T_d, O_h, C_{nh}, D_{nd}, D_{nh} possess S_n. Molecules belonging to these point groups can therefore not be chiral!

Note: Molecules are usually chiral when neither i (S_2) nor \sigma_h is present (\sigma_h ≡ S_1)